lunes, 23 de febrero de 2009

act.7y9.microcontoladores

La memoria de acceso aleatorio, o RAM es la memoria desde donde el procesador recibe las instrucciones y guarda los resultados. Es el área de trabajo para la mayor parte del software de un computador.1 Existe una memoria intermedia entre el procesador y la RAM, llamada caché, pero ésta sólo es una copia de acceso rápido de la memoria principal almacenada en los módulos de RAM.1 Los módulos de RAM son la presentación comercial de este tipo de memoria, se compone de integrados soldados sobre un circuito impreso.
Se trata de una memoria de estado sólido tipo DRAM en la que se puede tanto leer como escribir información. Se utiliza como memoria de trabajo para el sistema operativo, los programas y la mayoría del software. Es allí donde se cargan todas las instrucciones que ejecutan el procesador y otras unidades de cómputo. Se dicen "de acceso aleatorio" o "de acceso directo" porque se puede leer o escribir en una posición de memoria con un tiempo de espera igual para cualquier posición, no siendo necesario seguir un orden para acceder a la información de la manera más rápida posible.
La frase memoria RAM se utiliza frecuentemente para referirse a los módulos de memoria que se usan en los computadores personales y servidores. En el sentido estricto, estos dispositivos contienen un tipo entre varios de memoria de acceso aleatorio , ya que las ROM, memorias Flash , caché (SRAM) , los registros en procesadores y otras unidades de procesamiento también poseen la cualidad de presentar retardos de acceso iguales para cualquier
Memoria rom.
Algunas de las consolas de videojuegos que usan programas basados en la memoria ROM son la Super Nintendo, la Nintendo 64, la Mega Drive o la Game Boy. Estas memorias ROM, pegadas a cajas de plástico aptas para ser utilizadas e introducidas repetidas veces, son conocidas como cartuchos. Por extensión la palabra ROM puede referirse también a un archivo de datos que contenga una imagen del programa que se distribuye normalmente en memoria ROM, como una copia de un cartucho de videojuego.
Una razón de que todavía se utilice la memoria ROM para almacenar datos es la velocidad ya que los discos son más lentos. Aún más importante, no se puede leer un programa que es necesario para ejecutar un disco desde el propio disco. Por lo tanto, la BIOS, o el sistema de arranque oportuno de la computadora normalmente se encuentran en una memoria ROM.
La memoria RAM normalmente es más rápida para lectura que la mayoría de las memorias ROM, por lo tanto el contenido ROM se suele traspasar normalmente a la memoria RAM cuando se utiliza.
EPROM son las siglas de Erasable Programmable Read-Only Memory (ROM programable borrable de sólo lectura). Es un tipo de chip de memoria ROM no volátil inventado por el ingeniero Dov Frohman. Está formada por celdas de FAMOS (Floating Gate Avalanche-Injection Metal-Oxide Semiconductor) o transistores de puerta flotante, cada uno de los cuales viene de fábrica sin carga, por lo que son leídos como 0 (por eso, una EPROM sin grabar se lee como 00 en todas sus celdas). Se programan mediante un dispositivo electrónico que proporciona voltajes superiores a los normalmente utilizados en los circuitos electrónicos. Las celdas que reciben carga se leen entonces como un 1.
Una vez programada, una EPROM se puede borrar solamente mediante exposición a una fuerte luz ultravioleta. Esto es debido a que los fotones de la luz excitan a los electrones de las celdas provocando que se descarguen. Las EPROMs se reconocen fácilmente por una ventana transparente en la parte alta del encapsulado, a través de la cual se puede ver el chip de silicio y que admite la luz ultravioleta durante el borrado.
memoria flash es una forma desarrollada de la memoria EEPROM que permite que múltiples posiciones de memoria sean escritas o borradas en una misma operación de programación mediante impulsos eléctricos, frente a las anteriores que sólo permite escribir o borrar una única celda cada vez. Por ello, flash permite funcionar a velocidades muy superiores cuando los sistemas emplean lectura y Las memorias flash son de carácter no volátil, esto es, la información que almacena no se pierde en cuanto se desconecta de la corriente, una característica muy valorada para la multitud de usos en los que se emplea este tipo de memoria.
Los principales usos de este tipo de memorias son pequeños dispositivos basados en el uso de baterías como teléfonos celulares o móviles, asistentes digitales personales (Personal Digital Assistant), pequeños electrodomésticos, cámaras de fotos digitales, reproductores portátiles de audio, etc.
Las capacidades de almacenamiento de estas tarjetas que integran memorias flash comenzaron en 128 MB (128 MiB) pero actualmente se pueden encontrar en el mercado tarjetas de hasta 32 GB (32 GiB) por parte de la empresa Panasonic en formato SD. PUERTOS DE ENTRADA / SALIDA EN UN MICROCONTROLADOR
Cualquier aplicación de un sistema digital basado en un microprocesador o
Microcontrolador requiere la transferencia de datos entre circuitos externos al
Microprocesador y él mismo. Estas transferencias constituyen las operaciones
llamadas ENTRADA y SALIDA..
Los puertos de entrada/salida son básicamente registros externos o internos.
Algunos microprocesadores proporcionan señales de control que permiten que
los registros externos que forman los puertos de E/S ocupen un espacio de
direcciones separada, es decir, distinto del espacio de direcciones de los registros
externos que componen la memoria. Cuando los puertos tienen asignado un
espacio de direcciones separado, se dice que están en modo de
ENTRADA/SALIDA AISLADA o E/S ESTÁNDAR.

Las caracteristicas de los ocsiladores que se utiliza con microcontroladore.

Todo microprocesador o microcontrolador requiere de un circuito que le indique a qué velocidad debe trabajar. Este circuito es conocido por todos como un oscilador de frecuencia. Este oscilador es como el motor del microcontrolador por lo tanto, este pequeño circuito no debe faltar. En el caso del microcontrolador PIC16F84 el pin 15 y el pin 16 son utilizados para introducir la frecuencia de reloj.
Existen microcontroladores que tienen su oscilador internamente y no requieren de pequeños circuitos electrónicos externos. El microcontrolador PIC16F84 requiere de un circuito externo de oscilación o generador de pulsos de reloj. La frecuencia de reloj máxima es de 20 Mhz; sin embargo, te recomiendo que comiences a trabajar con una frecuencia de reloj de 4 MHz, ya que es más práctico y está más extendido, sobre todo en los ejemplos aquí expuestos..

act.6 Automatizacion.Sensores

Sensor capacitivo.
El condensador, a veces denominado con el anglicismo capacitor, es un dispositivo formado por dos conductores o armaduras, generalmente en forma de placas o láminas, separados por un material dieléctrico, que sometidos a una diferencia de potencial adquieren una determinada carga eléctrica.
A esta propiedad de almacenamiento de carga se le denomina capacidad, y en el sistema internacional de unidades se mide en Faradios (F), siendo un Faradio la capacidad de un condensador en el que, sometidas sus armaduras a una diferencia de potencial de 1 Voltio, estas adquieren una carga eléctrica de 1 Culombio.
Se denomina capacitancia de un conductor a la propiedad de adquirir carga eléctrica cuando es sometido a un potencial eléctrico con respecto a otro en estado neutro.
La relación entre el área de las placas y la capacitancia nos da que a mayor área útil, mayor será la capacitancia (son directamente proporcionales). En tanto la relación entre la capacitancia y la separación entre dos placas es inversamente proporcional. Por último, tenemos que la capacitancia depende del dieléctrico, siendo que para el vacío, la capacitancia es C0; para un aislante dieléctrico K, la capacitancia está dada por C0K.

donde:
ε0: constante dieléctrica del vacío
εr: constante dieléctrica o permitividad relativa del material dieléctrico entre las placas
A: el área efectiva de las placas
d: distancia entre las placas o espesor del dieléctrico
Aplicaciones
Detección de nivel
En esta aplicación, cuando un objeto (líquidos, granulados, metales, aislantes, etc.) penetra en el campo eléctrico que hay entre las placas sensor, varía el dieléctrico, variando consecuentemente el valor de capacitancia.
Censado de humedad
El principio de funcionamiento de esta aplicación es similar a la anterior. En esta ocasión el dieléctrico, por ejemplo el aire, cambia su permitividad con respecto a la humedad del ambiente.
Detección de posición
Esta aplicación es básicamente un condensador variable, en el cual una de las placas es móvil, pudiendo de esta manera tener mayor o menor superficie efectiva entre las dos placas, variando también el valor de la capacitancia, y también puede ser usado en industrias químicas.
Transductores
La medición en este tipo de sensores se suele hacer mediante una señal variable, típicamente sinusoidal, que es modulada con la variación de la capacidad del sensor para luego obtener su valor eficaz.

sensor inductivo
Los sensores inductivos son una clase especial de sensores que sirven para detectar materiales metálicos ferrosos. Son de gran utilización en la industria, tanto para aplicaciones de posicionamiento como para detectar la presencia de objetos metálicos en un determinado contexto (control de presencia o de ausencia, detección de paso, de atasco, de posicionamiento, de codificación y de conteo).
Conceptos teóricos
Una corriente (i) que circula a través de un hilo conductor, genera un campo magnético que está asociado a ella.

Los sensores de proximidad inductivos contienen un devanado interno.Cuando una corriente circula por el mismo, un campo magnético es generado, que tiene la dirección de las flechas naranjas. Cuando un metal es acercado al campo magnético generado por el sensor de proximidad, éste es detectado.
La bobina del sensor inductivo induce corrientes de Foucault en el material a detectar. Éstas, a su vez, generan un campo magnético que se opone al de la bobina del sensor, causando una reducción en la inductancia de la misma. Esta reducción en la inductancia de la bobina interna del sensor, trae aparejado una disminución en la impedancia de ésta.

EL SENSOR RETROREFLECTIVO: Se usa en la industria para la protección de los trabajadores por riesgo de explosión, detectan cualquier material que no obstruya su reelec

El Sensor de movimiento
Un Detector de Movimiento es un dispositivo electrónico equipado de
sensores que responden un movimiento físico. Se encuentran, generalmente, en sistemas de seguridad o en circuitos cerrados de televisión

sistema puede estar compuesto, simplemente, por una cámara de vigilancia conectada a un ordenador, que se encarga de generar una señal de alarma o poner el sistema en estado de alerta cuando algo se mueve delante de la cámara. Aunque, para mejorar el sistema se suele utilizar más de una cámara, multiplexores y grabadores.
Además, se maximiza el espacio de grabación, grabando solamente cuando se detecta movimiento.

act.6 Automatizacion.

martes, 17 de febrero de 2009

resumen de los microcontroladores

un microcontrolador es un dispositivo electrico capaz de llevar a cabo prosesos logicos. estos procesos o acciones son programados en lenguaje ensemblador por el usuario y son introducidos en el micro a travez de un programador.
cuando no habia micro las personas diseñaban sus circuitos electricos que tenian muchos componentes electricos y calculos matematicos como transistores resistencias etc.
En 1971 aparesio el primer microprocesodor los mas conocidos era el z-80 y el 8085 estos originaron un cambio tambien despues se fueron redugiendo los tamaños y tambien despues aparesio el microcontroladorque simplifico mas el diseño electico.
La diferencia entre el microprocesador y el microcontrolador es que el microcprocesador tiene la memoria ram, rom y y otros perifericos estan fisicamente separados y en el microcontrolador tiene todo junto.

TIPOS DE ARQUITECTURA DE MICROCONTROLADOR.
arquitectura von newman
es aquella en el cual la unidad central de proceso el cpu esta conectado a una area unica de memorias es donde se guardan los datos .
la consecuensia de tener un unico bus ase que el micro sea mas lento
Las principales limitaciones de esta arquitectura
1-La limitacion de la longitud de las instrucciones.
2-La limitacicon de la velocidad de operacion.
ventajas de esta arquitectura
1-El tamaño de las instruciones.
2-Eltiempo de acceso a las instrucciones.
desventajas
debe tener instrucciones especiales.
LA arquitectura harvard
se refiere a la arquitectura de computadoras que utilizaba dispositivos de almacenamiento fisicamente separados para las instrucciones y para los datos
El término proviene de la computadora Harvard Mark I, que almacenaba las instrucciones en cintas perforadas y los datos en interruptores.

miércoles, 11 de febrero de 2009

ramiromona@hotmail.com, pamf_eagle@hotmail.com, balc_ge@hotmail.com

martes, 10 de febrero de 2009

Microcontroladores

Automatización Industriales el uso de sistemas o elementos computarizados para controlar maquinarias y/o procesos industriales substituyendo a operadores humanos.
El alcance va más allá que la simple mecanización de los procesos ya que ésta provee a operadores humanos mecanismos para asistirlos en los esfuerzos físicos del trabajo, la automatización reduce ampliamente la necesidad sensorial y mental del humano. La automatización como una disciplina de la ingeniería es más amplia que un mero sistema de control, abarca la
instrumentación industrial, que incluye los sensores y transmisores de campo, los sistemas de control y supervisión, los sistema de transmisión y recolección de datos y las aplicaciones de software en tiempo real para supervisar y controlar las operaciones de plantas o procesos industriales.
Las primeras máquinas simples sustituían una forma de esfuerzo en otra forma que fueran manejadas por el ser humano, tal como levantar un peso pesado con sistema de poleas o con una palanca. Posteriormente las máquinas fueron capaces de sustituir formas naturales de energía renovable, tales como el viento, mareas, o un flujo de agua por energía humana.
Los botes a vela sustituyeron a los botes de remos. Todavía después, algunas formas de automatización fueron controlados por mecanismos de relojería o dispositivos similares utilizando algunas formas de fuentes de poder artificiales -algún resorte, un flujo canalizado de agua o vapor para producir acciones simples y repetitivas, tal como figuras en movimiento, creación de música, o juegos. Dichos dispositivos caracterizaban a figuras humanas, fueron conocidos como autómatas y datan posiblemente desde 300 AC. La parte más visible de la automatización actual puede ser la
robótica industrial. Algunas ventajas son repetitividad, control de calidad más estrecho, mayor eficiencia, integración con sistemas empresariales, incremento de productividad y reducción de trabajo. Algunas desventajas son requerimientos de un gran capital, decremento severo en la flexibilidad, y un incremento en la dependencia del mantenimiento y reparación. Por ejemplo, Japón ha tenido necesidad de retirar muchos de sus robots industriales cuando encontraron que eran incapaces de adaptarse a los cambios dramáticos de los requerimientos de producción y no eran capaces de justificar sus altos costos iniciales.